SRecord

Reference Manual

Scott Finneran <scottfinneran @yahoo.com.au>
Peter Miller <pmiller @ opensource.org.au>

This document describes SRecord version 1.64
and was prepared 15 August 2025.

This document describing the SRecord program, and the SRecord program itself, are
Copyright 2014 Scott Finneran <scottfinneran @yahoo.com.au>
Copyright Peter Miller <pmiller @opensource.org.au>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Read Me(SRecord) Read Me(SRecord)

NAME
SRecord — manipulate EPROM load files

DESCRIPTION
The SRecord package is a collection of powerful tools for manipulating EPROM load files.

I wrote SRecord because when I was looking for programs to manipulate EPROM load files, I could not
find very many. The ones that I could find only did a few of the things I needed. SRecord is written in C++
and polymorphism is used to provide the file format flexibility and arbitrary filter chaining. Adding more
file formats and filters is relatively simple.

The File Formats
The SRecord package understands a number of file formats:

Ascii-Hex
The ascii-hex format is understood for both reading and writing. (Also known as the ascii-space-
hex format.)

ASM It is possible, for output only, to produce a serices of DB statements containing the data. This can
be useful for embedding data into assembler programs. This format cannot be read.

Atmel Generic
This format is produced by the Atmel AVR assembler. It is understood for both reading and
writing.

BASIC It is possible, for output only, to produce a serices of DATA statements containing the data. This
can be useful for embedding data into BASIC programs. This format cannot be read.

Binary Binary files can both be read and written.

B-Record
Files in Freescale Dragonball bootstrap b-record format can be read and written.

C It is also possible to write a C array declaration which contains the data. This can be useful when
you want to embed download data into C programs. This format cannot be read.

COE The Xilinx Coefficient File Format (.coe) is understood for output only.
Cosmac The RCA Cosmac Elf format is understood for both reading and writing.

DEC Binary
The DEC Binary (XXDP) format is understood for both reading and writing.

Elektor Monitor (EMONS52)
The EMONS2 format is understood for both reading and writing.

Fairchild Fairbug
The Fairchild Fairbug format is understood for both reading and writing.

Formatted Binary
The Formatted Binary format is understood for both reading and writing.

Four Packed Code (FPC)
The FPC format is understood for both reading and writing.

Hexdump
It is possible to get a simple hexdump as output.

IDT/sim The IDT/sim binary file format is understood for both reading and writing.

Intel The Intel hexadecimal format is understood for both reading and writing. (Also known as the
Intel MCS-86 Object format.)
Intel AOMF

The Intel Absolute Object Module Format (AOMF) is understood for both reading and writing.

Intel 16 The Intel hexadecimal 16 format is understood for both reading and writing. (Also known as the
INHX16 file format.)

Reference Manual SRecord 1

Read Me(SRecord) Read Me(SRecord)

LSI Logic Fast Load
The LSI Logic Fast Load format is understood for both reading and writing. Logisim The
Logisim format is understood for both reading and writing. See srec_logisim(5) for more
information.

Memory Initialization Format
The Memory Initialization Format (.mem) by Lattice Semiconductor is understood for writing
only.

MIF The Memory Initialization File format by Altera is supported for both reading and writing.

MOS Technology
The MOS Technology hexadecimal format is understood for both reading and writing.

MIPS-Flash
The MIPS Flash file format is supported for both reading and writing.

Motorola S-Record
The Motorola hexadecimal S-Record format is understood for both reading and writing. (Also
known as the Exorciser, Exormacs or Exormax format.)

MsBin The Windows CE Binary Image Data Format is supported both for reading and writing.

Needham
The Needham Electronics ASCII file format is understood for both reading and writing.

0S65V The Ohio Scientific hexadecimal format is understood for both reading and writing.

PPB The Stag Prom Programmer binary format is understood for both reading and writing.
PPX The Stag Prom Programmer hexadecimal format is understood for both reading and writing.
Signetics

The Signetics format is understood for both reading and writing.

SPASM The SPASM format is used by a variety of PIC programmers; it is understood for both reading
and writing.

Spectrum
The Spectrum format is understood for both reading and writing.

Tektronix (Extended)
The Tektronix hexadecimal format and the Tektronix Extended hexadecimal format are both
understood for both reading and writing.

Texas Instruments Tagged
The Texas Instruments Tagged format is understood for both reading and writing (both 8 and 16
bit). Also known as the TI-tagged or TI-SDSMAC format.

Texas Instruments ti-txt
The TI-TXT format is understood for reading and writing. This format is used with the bootstrap
loader of the Texas Instruments MSP430 family of processors.

TRS-80 The Radio Shack TRS-80 object file format is understood for reading and writing.
VHDL 1t is possible to write VHDL file. This is only supported for output.

Verilog VMEM
It is possible to write a Verilog VMEM file suitable for loading with $readmemh (). This
format is supported for reading and writing.

Wilson The Wilson format is understood for both reading and writing. This mystery format was added
for a mysterious type of EPROM writer.

The Tools
The primary tools of the package are srec_cat and srec_cmp. All of the tools understand all of the file
formats, and all of the filters.

Reference Manual SRecord 2

Read Me(SRecord) Read Me(SRecord)

srec_cat The srec_cat program may be used to catenate (join) EPROM load files, or portions of EPROM
load files, together. Because it understands all of the input and output formats, it can also be used
to convert files from one format to another.

srec_cmp
The srec_cmp program may be use to compare EPROM load files, or portions of EPROM load
files, for equality.

srec_info
The srec_info program may be used to print summary information about EPROM load files.

The Filters
The SRecord package is made more powerful by the concept of input filters. Wherever an input file may be
specified, filters may also be applied to that input file. The following filters are available:

bit reverse
The bit-reverse filter may be used to reverse the order of bits in each data byte.

byte swap
The byte swap filter may be used to swap pairs of add and even bytes.

CRC The various crc filters may be used to insert a CRC into the data.
checksum

The checksum filters may be used to insert a checksum into the data. Positive, negative and bit-
not checksums are available, as well as big-endian and little-endian byte orders.

crop The crop filter may be used to isolate an input address range, or ranges, and discard the rest.
exclude The exclude filter may be used to exclude an input address range, or ranges, and keep the rest.
fill The fill filter may be used to fill any holes in the data with a nominated value.

length The length filter may be used to insert the data length into the data.

maximum
The maximum filter may be used to insert the maximum data address into the data.

minimum
The minimum filter may be used to insert the minimum data address into the data.

offset ~ The offset filter may be used to offset the address of data records, both forwards and backwards.

random fill
The random fill filter may be used to fill holes in the data with random byte values.

split The split filter may be used to split EPROM images for wide data buses or other memory striping
schemes.

unfill The unfill filter may be used to make holes in the data at bytes with a nominated value.
unsplit The unsplit filter may be reverse the effects of the split filter.

More than one filter may be applied to each input file. Different filters may be applied to each input file.
All filters may be applied to all file formats.

ARCHIVE SITE

The latest version of SRecord is available on the Web from:

URL: http://srecord.sourceforge.net/

File: index.html # the SRecord page

File: srecord—1.64.README # Description, from the tar file
File: srecord—1.64.1sm # Description, LSM format
File: srecord—1.64.spec # RedHat package specification
File: srecord—1.64.tar.gz # the complete source

File: srecord—1.64.pdf # Reference Manual

Reference Manual SRecord 3

Read Me(SRecord) Read Me(SRecord)

BUILDING SRECORD
Full instructions for building SRecord may be found in the BUILDING file included in this distribution.

It is also possible to build SRecord on Windows using the Cygwin (www.cygwin.com) or DJIGPP
(www.delorie.com/djgpp) environments. Instructions are in the BUILDING file, including how to get
native Windows binaries.

COPYRIGHT
srecord version 1.64
Copyright © Scott Finneran <scottfinneran @yahoo.com.au>
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller <pmiller @ opensource.org.au>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in the LICENSE file included with this distribution.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 4

Read Me(SRecord) Read Me(SRecord)

RELEASE NOTES
This section details the various features and bug fixes of the various releases. For excruciating and
complete detail, and also credits for those of you who have generously sent me suggestions and bug reports,
see the etc/CHANGES. * files.

Version 1.64 (2014-Jun-22)
* Cleaned up a few references to the maintainer’s name.

* Fixed some warnings in test 38

* Fixed bugs discovered by Mike <russiane39@gmail.com> regarding the formatting of some of the
examples where lines were wrapping the wrong way.

* Added the ability to compile without libgcrypt if the user specifies the option --without-gcrypt to
configure. If gcrypt is missing, the user is prompted to either install it or explicitly compile with it disabled.

* Cleaned up a few recent compiler and doxygen warnings.

* Added Sourceforge Patch #4 contributed by Stas Sergeev <stsp@sourceforge.net> which contributed
get_upper_bound() and makes it and the lower equivalent public (for use from libsrecord). Also fixed a bug
in srec_memory::find_next_chunk() where it would fail to reset the find_next_chunk_index once it became
equal to nchunks. After that, find_next_chunk() would always fail.

* Added prefix and postfix strings to the C Array format which are applied at each end of the data array
declaration. This allows the user to add various compiler directives such as location flags or non-standard
load address specifiers.

» when converting from AOMF Fixed Sourceforge bug 11 raised by patryks. In the analysis, it was
discovered that a start address (of zero) was being generated when converting from AOMF. AOMF does not
support the concept of an execution start address.

» The Windows build instructions have been updated by Jens Heilig <jens@familie-heilig.net>.

* Fixed the length field description in extended tektronix documentation. The implementation was already
correct.

* Added a regression test for calculated address for CRC (Sourceforge bug 19).

Version 1.63 (2014-Apr-07)
* The srec_tools now understand how to read and write Logisim formt.

* Daniel Anselmi <danselmi@gmx.ch> fixed a bug with generating Lattice Memory init files.

* This change set generalises the code that handles redundant byte settings and contradictory byte settings.
The defcon_t type describes what to do: ignore, warn or error. The ——multiple option is no more.

* Daniel Anselmi <danselmi@gmx.ch> discovered that the "mem" output format was malformed. The lines
now break every "width" bits.

* Hanspeter Niederstrasser disoverd some false negatives in the test suite, when used on OSX. Thank you
for the bug report. This has been fixed.

» Simplification of selection code to choose which CRC16 implmentation is used.

« Juliano MourAA£o Vieira <juliano@utfpr.edu.br> discovered a problem with the srec_mif.5 description.
This mistake is not present in the code.

* Liju Prasanth Nivas (RBEI/ECA1) <Liju.PrasanthNivas@in.bosch.com> suggsted another use case for the
examples. In the case of "joining" files that are meant to be “stacked in layers”. Contributions for the
examples are always appreciated. Thank you.

¢ Added more comments to the code, so that the use of URL_deode for the command line is better
explained. And comment to explain why not to do turl_encode when building header records.

* Added URL quoting to the command line. There are times you need to be able to insert unprintable
characters on the command line. The immediate use case prompting this was a user wanting to put a NUL
in the header string. So now you can, as "%00". The other choice was quoted printable encoding, but that

Reference Manual SRecord 5

Read Me(SRecord) Read Me(SRecord)

was a bit obscure.
* Fixed new warnings when building with g++ 4.8.1
* Added more links to the windows files on SourceForge, maybe it will boost download numbers.

Version 1.62 (2013-Jun-05)

* Luc Steynen <LucSteynen@edna.be> discovered that the —hecksum-big-endian opion was a counter-
intuitive alias for the the —checksum-bitnot-big-endian option. The —checksum-big-endian option is now
deprecated, in favor of the —checksum-bitnot-big-endian option; the code will warn uers of the old option
they will need to change. Ditto little-endian variants

* Alin Pilkington <apilkington@moog.com> found that the Tektronics Extended format was calculating
the record length incorrectory. Thanks you for the bug report. This has been fixed for both reading and
writing.

* Dr. Benedikt Schmitt <Benedikt.Schmitt@safeintrain.de> suggested being able to inject arbitrary data
into the file header (such as NUL termination characters). This change set adds URL-style escapes (e.g.
%?25) to the string on he command line. For example: —header or —generate —string

Version 1.61 (2013-Jan-04)
* Izzet Ozcelik <izzetozcelik@cscope.co.uk> discovered a bug in the Tektronix-Extenden format line
checksum calculations. The comparison should have been in 8 bits, not int.

* Daniel Anselmi <danselmi@gmx.ch> contributed a Memory Initialization Format by Lattice
Semiconductor, for output only.

* Daniel Anselmi <danselmi@gmx.ch> contributed a Xilinx Coefficient File Format (.coe) output class.

Version 1.60 (2012-May-19)
* There are now several additional CRC-16 polynomials, plus the ability to select a polynomial by name,
rather than by value. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for a table of names and
values.

Version 1.59 (2012-Feb-10)
* A number of additional CRC-16 polynomials have been added, as well as the ability to select a
polynomial by name, rather than by value. See srec_input(1) for more information.

Version 1.58 (2011-Dec-18)
* The —guess command line option, for guessing the file format, now also tells you the command line
option you could have used instead of —guess for the exact format.

* The Intergated Device Technology (IDT) system integration manager (IDT/sim) binary format is now
understood for both reading and writing.

* The Stag Prom Programmer binary format is now supported for both reading and writing.
* The Stag Prom Programer hexadecimal format is now understood for both reading and writing.
» The MIPS-Flash fiel format is now supported for both reading and writing.

* Bernhard Weirich <Bernhard.Weirich@riedel.net> discovered that a backward compatible
option had been omitted when the —INtel_16 option was renamed —INtel_HeX_16 to more closely
match the usual abbreviation (INHX16) for this format. The backwards compatible option name has
been reintroduced.

* The windows build instructions have been greatly imptoved, based on the experiences of Jens Heilig
<jens@familie-heilig.net> which he has generously shared.

* The documentation in the manual about sequence warnings has been improved. The —disable-sequence-
warnings option must come before the input file on the command line. My thanks to Emil Gracic
<emil_ kruki@yahoo.com> for reporting this problem.

Version 1.57 (2011-Jun-09)
» The byte order of the fletcher16 output has been reversed.

Reference Manual SRecord 6

Read Me(SRecord) Read Me(SRecord)

* The meaning of the —address-length option has been change for the Intel output format. Previously, 2
meant using i16hex 20-bit segmented addressing, and >2 meant using i32hex extended addressing. This
has been changed: a value of 2 requests i8hex 16-bit addressing, a value of 3 requests i16hex 20-bit
segment addressing, and a value >=4 requests i132hex 32-bit addressing. My thanks to Stephen R.
Phillips <srp@CSECorporation.com> for reporting the absence of i8hex support.

» The —generate —repeat-string option is now able to take a string that looks like a number as the text to
be repeated. My thanks to Stephen R. Phillips <srp@CSECorporation.com> for reporting this
problem.

* Luca Giancristofaro <luca.giancristofaro@prosa.com> discovered a WinAVR linker that is a
sandwich short of a picnic: it generated non-conforming Intel hex end-of-file records. This is no longer
an error, but only a warning.

» There were some problems with the RPM spec file, these have been improved. My thanks to Galen Seitz
<galens@seitzassoc.com> for reporting this problem.

Version 1.56 (2010-Sep-15)
* A bug has been fixed in the MsBin output, it now concatenates records correctly, and calaulate
checksums appropriately.

* It is now possible to ask the Fletcher 16 filter to give you a specific answer, and adjusting the checksum
to achieve that result. It is also possible to specify different seed values for the sums.

» There is a new srec_cat —enable=optional-address option to cause output formats capable of omitting
addresses, to omit a leading zero address, as those formats usually default the address to zero, if no
address information is seen before the first data record. Defaults to false (disabled).

* There is a new srec_cat(1) —output-block-packing option, that may be used to pack output records even
when they cross internal SRecord boundaries.

* There is a new srec_cat(1) —output-block-size so that you can specify the block size exactly, rather than
implying it with the line length option.
Version 1.55 (2010-Feb-10)

» The Makefile.in has been improved, it now copes with non-standard ——prefix options.

* The rpm.spec file has been improved, it now separates the commands, shared libraries and development
files.

Version 1.54 (2010-Jan-29)
* There is now a shared library installed, including the necessary header files so that you can use all of the
file formats and filters in your own projects.

» The license on the shared library code is GNU Lesser General Public License, version 3.0 or later.

» The code can cope with older versions of GNU Libgcrypt. In the case of very old versions, by ignoring
it.

* A number of build problems have been fixed.

Version 1.53 (2009-Nov-10)
* There is a new MsBin (Windows CE Binary Image Data) file format, supported for both reading and
writing.

* The lintian(1) warning about hyphen in the manual pages has been silenced, by careful use of —, - and —
as appropriate. Sure makes some of the sources ugly, tho. The lintian(1) warning about the undefined
.XX macro has been silenced, by making it conditional.

* The code will build without libgcrypt.

Version 1.52 (2009-Sep-17)
* There is a new srec_cat —generator —I-e-constant data generator (and also —b-e-const) that may be used
to insert multi-byte constants into your data. See srec_input(1) for more information.

Reference Manual SRecord 7

Read Me(SRecord) Read Me(SRecord)

Version 1.51 (2009-Sep-13)
* A number of gcc 4.4 build problems have been fixed.

* A bugs has been fixed in the Intel output format. When using the segemented format (address-length=2)
records that span the end of segment boundary are tricky. The code now carefully splits such output
records, to ensure the two parts are explicitly placed into separate segments.

Version 1.50 (2009-Jul-09)
» The CRCI16 code has been enhanced to provide low-to-high bit order, in addition to the previous high-to-
low bit order. It is also possible to specify the polynomial, with the default the CCITT standard
polynomial, as was in the previous code. See srec_input(1) for more information.

* The MDS5, RipeMD-160, SHA1, SHA224, SHA256, SHA384, SHA 512 and Whirlpool message digests
are now supported. See srec_input(1) for more information.

» There is a new srec_cat —bit-reverse filter, that may be used to reverse the bits in each data byte. See
srec_input(1) for more information.

Version 1.49 (2009-May-17)
* A typo in the srec_input(1) man page has been fixed.

Version 1.48 (2009-Apr-19)
* There are new Fletcher Checksum filters, both 32-bits and 16-bits, both little-endian and big-endian.

* There are new Adler Checksum filters, both 32-bits and 16-bits, both little-endian and big-endian.

Version 1.47 (2009-Feb-19)
* Memory Initialzation File (MIF) format by Altera is now supported for reading and writing.

Version 1.46 (2009-Jan-13)
* There is a new option for the ——x-e-length filters, they can now accept a width, and this is divided into
the byte lenght, so that you can insert the length in units of words (2) or longs (4).

¢ Some small corrections have been made to the documentation.

* The —minimum and —maximum options have been renamed —minimum-address and —maximum-address,
to avoid a command line grammar syntax problem.

Version 1.45 (2008-Sep-30)
* A bug has been fixed in the srec_cat(1) command. You are now able to specify several inputs within
parentheses, instead of just one. This allows filters to be applied to the concatenation of several inputs.

* The srec_cat(1) command is now able to write FORTH output.

Version 1.44 (2008-Aug-29)
* Some compilers issue a warning when const appears before extern. "warning: storage class is not first".
The C output has been updated to conform to this expectation.

* The manual page for srec_cat(1) has been enhanced to describe the in-memory data model, and the
resulting output data order.

* The —motorola optional width argument now produces a better error message when it is out of range.

» The —fill filter now checks the size, and fails for absurdly large fills, with a —big override if they really
want >1GB fills.

* A bug in the .spec file for rpmbuild has been fixed, it now takes notice of $RPM_BUILD_ROOT

* There is a new —line-termination option, which may be used to select the desired line termination of
output text files.

Version 1.43 (2008-Jul-06)
» The srec-cat —data-only option has been broken down into four separate controls. It is now possible to

—enable and —disable individual features, such as “header”, “data-count”, “execution-start-address” and
“footer”. See srec_cat(1) for more information.

Reference Manual SRecord 8

Read Me(SRecord) Read Me(SRecord)

» The srec_cat —start-address option has been renamed —execution-start-address to remove any
confusion with the —offset filter. The documentation now explicitly explains the difference between the
two.

* Examples of converting to and from binary files have been added to the srec_examples(1) man page.

* A bug has been fixed in the MOS Tech format, it now emits an end record even when there is no
execution start address passed in.

Version 1.42 (2008-Jun-01)
* The MOS Technology format was not reading and writing end records correctly, this has been fixed. The
name of the company has been corrected.

* Some examples of how to insert constant or scripted data into your EPROM load files have been added to
the srec_examples(1) man page.

Version 1.41 (2008-May-12)
» False negative being reported by tests on Cygwin have been fixed.

* There are six new filters (—be-exclusive-length, —le-exclusive-length, —be-exclusive-maximum, —le-
exclusive-maximum, —be-exclusive-minimum and —le-exclusive-minimum) which are very similar to
their non-exclusive equivalents, except that they do not include the adress range covered by their output
in their output.

* A bug has been fixed in the C word-array output. It was getting offsets and lengths wrong in some cases.
* A bug has been fixed in the generated C array header file, it no longer omits the section descriptor arrays.

* A problem with building RPM packages with the names of the executables in the .spec file has been
fixed, and the BuildRequires has been updated.

Version 1.40 (2008-Mar-13)
* An RPM build problem has been fixed.

» The dependency on the Boost library is now documented in the BUILDING file.
* Some build problems with g++ 4.3 have been fixed

* A bug has been fixed in the calculation of ranges on the command line, it no longer goes into an infinite
loop for "—fill OXxFF —over { foo.hex —exclude —within foo.hex }" construct, which should have been
calculating an empty fill set, but was instead calculating a 4GB fill set.

* The CRC32 filters now take an —xmodem option, to use an xmodem-like (all bit zero) initial state, rather
than the default CCITT (all bits on) initial state.

Version 1.39 (2008-Feb-04)
* A bug has been fixed in the use of parentheses to group filters and override the default precedences.

Version 1.38 (2008-Jan-14)
» The CRCI16 filters now support a —Broken option, to perform a common-but-broken CRC16 calculation,
in addition to the CCITT and XMODEM calculations.

* A link has been added to the CRC16 man page section to the
www.joegeluso.com/software/articles/ccitt.htm web page, to explain the difficulties in seeding CRC16
calculations.

* A buglet has been fixed in the srec_motorola(5) man page, it now includes S6 in the list of things that
can appear in the type field.

* The ability to negate expressions is now mentioned in the srec_examples(1) man page.

Version 1.37 (2007-Oct-29)
It is now possible to have negative expressions on the command line, to facilitate “——offset — —minimum
foo” usages.

* The srec_cat(1) command now has a simple hexadecimal dump output format.

Reference Manual SRecord 9

Read Me(SRecord) Read Me(SRecord)

* The use of uudecode(1) in the tests has been removed, so sharutils is no longer a build dependency.

Version 1.36 (2007-Aug-07)
* A bug has been fixed in the CRC-16 CCITT calculation; the algorithm was correct but the start value was
incorrect, leading to incorrect results.

» The CRCI16 filters have a new ——no-augment option, to omit the 16 zero bits augmenting the message.
This is not CCITT standard conforming, but some implementations do this.

* A problem has been fixed in the generated Makefile.in file found in the tarball.
» The license has been changed to GNU GPL version 3.

Version 1.35 (2007-Jun-23)
* A major build problem with the generated makefile has been fixed.

Version 1.34 (2007-Jun-22)
* The C and ASM output formats have been improved in the word mode.

* Several build problems have been fixed.

Version 1.33 (2007-May-18)
* More examples have been added to the documentation.

* It is now possible to perform set intersection and set difference on address ranges on the command line.

* There is a new category of data source: generators. You can generate constant data, random data and
repeating data.

* The assembler and C-Array outputs now support additional options to facilitate MSP430 systems. They
can also optionally write shorts rather than bytes.

* You can now round address ranges on the command line to be whole multiples of a number of bytes.

Version 1.32 (2007-Apr-24)
* The TI-TXT format output has been improved; it is less spec conforming but more reality conforming. It
now allows odd alignment without padding. It also ends with a g instead of a Q.

* The warning for odd input addresses has been dropped. The spec didn’t like them, but the MSP430
handles them without a hiccup.

Version 1.31 (2007-Apr-03)
* The Verilog format now suppresses comments when you specify the ——data-only option.

* The Texas Instruments ti-txt (MSP430) format is now understood for reading and writing.

Version 1.30 (2007-Mar-21)
* The ascii-hex output format has been improved.

» The ti-tagged 16-bit format is now understood for reading and writing.
* The Intel format no longer warns about missing optional records.
* A bug in the ti-tagged format has been fixed, it now understands the ’0’ tag.

Version 1.29 (2007-Mar-13)
* A serious bug has been fixed in the generated Makefile.

Version 1.28 (2007-Mar-08)
* It is now possible to read and write files in the Freescale MC68EZ328 Dragonball bootstrap b-record
format

Version 1.27 (2006-Dec-21)
* [SourceForge Feature Request 1597637] There is a new warning issued when input data records are not
in strictly ascending address order. There is a new command line option to silence the warning.

* [SourceForge Feature Request 1592348] The command line processing of all srecord commands now
understands @file command line options, filled with additional space separated strings witch will be
treated as of they were command line options. This gets around absurdly short command line length

Reference Manual SRecord 10

Read Me(SRecord) Read Me(SRecord)

limits in some operating systems.

Version 1.26 (2006-May-26)
It is now possible to place parentheses on the command line in more places to clarify your intent.

» This change prepares SRecord for the next public release.

Version 1.25 (2006-May-18)
» The assembler output has been enhanced to produce ORG directives, if necessary, to change the data
address.

* The srec_cat(1) command now only writes an execution start address into the output if there was an
execution start address present in the input.

Version 1.24 (2006-Mar-08)
* Additional information has been added to the lseek error when they try to seek to addresses >= 2**31

» The CRC 16 filters have been enhanced to accept an argument to specify whether CCITT or XMODEM
calculations are to be performed.

Version 1.23 (2005-Sep-23)
» A segfault has been fixed on x86_64 when running the regression test suite.

* A compile problem with the lib/srec/output/file/c.cc file has been fixed.

Version 1.22 (2005-Aug-12)
» The —byte-swap filter now has an optional width argument, to specify the address width to swap. The
default is two bytes.

* The motorola file format now accepts an additional *width’ command line argument, so you can have
16-bit and 32-bit address multiples.

* A bug has been fixed in the VMEM output format. It was failing to correctly set the next address in some
cases. This fixes SourceForge bug 1119786.

* The —C-Array output format now uses the const keyword by default, you can turn it off with the —no-
const option. The —C-Array output format can now generate an additional include file if you use the
—INClude option. This answers SourceForge feature request 942132.

* A fix for the "undefined symbols" problem when using g++ 3.x on Cygwin and MacOsX has been added
to the ./configure script.

* There is a new —ignore-checksum command line option. The —ignore-checksums option may be used to
disable checksum validation of input files, for those formats which have checksums at all. Note that the
checksum values are still read in and parsed (so it is still an error if they are missing) but their values are
not checked.

Version 1.21 (2005-Feb-07)
* More Doxygen comments have been added to the class header files.

» There is a new srec_cat ——crlf option, which may be used for force CRLF output on operating systems
which don’t use that style of line termination.

* A number of problems with GCC, particularly with the early 3.x series.

* There is a new "Stewie" format, an undocumented format loosely based on the Motorola S-Record
format, apparently used in mobile phones. More information would be most welcome.

* A number of build problems have been fixed.

Version 1.20 (2004-Feb-08)
* The AOMF format now accepts (and ignores) more record types.

Version 1.19 (2004-Jan-03)
* It is now possible to set the execution start address in the output using the srec_cat
—Execution_Start_Address command line option.

Reference Manual SRecord 11

Read Me(SRecord) Read Me(SRecord)

» The Intel Absolute Object Module Format (AOMF) is now supported for reading and writing.

* There is a new srec_cat —Random_Fill filter, like the srec_cat —Fill filter except that it uses random
values.

Version 1.18 (2004-Jan-01)
* The VMEM format is now able to output data for 64 and 128 bits wide memories.

* A bug in the SRecord reference manuals has been fixed; the CRCxx had a copy-and-paste glitch and
always said big-endian where little endian was intended half the time.

Version 1.17 (2003-Oct-12)
» There is now support for Intel Extended Segment addressing output, via the ——address-length=2 option.

* There is now support for output of Verilog VMEM format. See srec_vmem(5) for more information.

* There is now support for reading and writing the INHX16 format, used in various PIC programmers. It
looks just like the Intel Hex format, except that the bytes counts and the addresses refer to words (hi,lo)
rather than bytes. See srec_intel16(5) for more information.

Version 1.16 (2003-Jul-28)
* Some updates have been made to cope with GCC 3.2

Version 1.15 (2003-Jun-16)
» The ASCII-Hex implementation is now slightly more complete. I still haven’t found a definitive
description.

* The Fairchild Fairbug format has been added for reading and writing. See srec_fairchild(5) for more
information.

* The Spectrum format has been added for reading and writing. See srec_spectrum(S) for more
information.

* The Formatted Binary format has been added for reading and writing. See srec_formatted_binary(5) for
more information.

* The RCA Cosmac Elf format has been added for reading and writing. See srec_cosmac(5S) for more
information.

* The Needham EMP programmer format has been added for reading and writing. See srec_needham(5)
for more information.

Version 1.14 (2003-Mar-11)
* Numerous fixes have been made to header handling. It is now possible to specify an empty header with
the ~—header command line option.

* Some more GCC 3.2 build problems have been fixed.

Version 1.13 (2003-Feb-05)
* Bugs have been fixed in the Texas Instruments Tagged and VHDL formats, which produced inconsistent
output.

* A couple of build problems have been fixed.
* There are two new output formats for ASM and BASIC.

Version 1.12 (2002-Dec-06)

* Itis now possible to put —minimum input.spec (also -maximum and —length) almost anywhere on the
command line that you can put a number. It allows, for example, the —offset value to be calculated from
the maximum of the previous file. The values calculated by —Minimum, —Maximum and —Length may
also be rounded to arbitrary boundaries, using —Round_Down, —Round_Nearest and —Round_Up.

* The malformed Motorola S5 records output by the Green Hills tool chain are now understood.

Version 1.11 (2002-Oct-21)
* The Ohio Scientific OS65V audio tape format has been added for reading and writing. See
srec_os65v(5) for more information.

Reference Manual SRecord 12

Read Me(SRecord) Read Me(SRecord)

Some build problems have been fixed.

Version 1.10 (2002-Jun-14)

The Intel format now emits the redundant extended linear address record at the start of the file; some
loaders couldn’t cope without it.

The Binary format now copes with writing to pipes.
The Motorola format now understands the S6 (24-bit data record count) records for reading and writing.
The DEC Binary format now works correctly on Windows machines.

The LSI Logic Fast Load format is now understood for both reading and writing. See srec_fastload(5)
for more information.

Version 1.9 (2001-Nov-27)

The DEC Binary (XXDP) format is now understood for both reading and writing. See
srec_dec_binary(5) for more information.

The Elektor Monitor (EMONS52) format is now understood for both reading and writing. See
srec_emon52(5) for more information.

The Signetics format is now understood for both reading and writing. See srec_signetics(5) for more
information.

The Four Packed Code (FPC) format is now understood for both reading and writing. See srec_fpc(5)
for more information.

Wherever possible, header data is now passed through by srec_cat(1). There is also a new srec_cat
—header option, so that you can set the header comment from the command line.

The Atmel Generic format for Atmel AVR programmers is now understood for both reading and writing.
See srec_atmel_generic(5) for more information.

The handling of termination records has been improved. It caused problems for a number of filters,
including the —fill filter.

A bug has been fixed in the checksum calculations for the Tektronix format.

There is a new SPASM format for PIC programmers. See srec_spasm(5) for more information.

Version 1.8 (2001-Apr-20)

There is a new “unfill” filter, which may be used to perform the reverse effect of the “fill” filter.
There is a new bit-wise NOT filter, which may be used to invert the data.

A couple of bugs have been fixed in the CRC filters.

Version 1.7 (2001-Mar-19)

The documentation is now in PDF format. This was in order to make it more accessible to a wider range
of people.

There is a new srec_cat ——address-length option, so that you can set the length of the address fields in
the output file. For example, if you always want S3 data records in a Motorola hex file, use the
——address-1length=4 option. This helps when talking to brain-dead EPROM programmers which
do not fully implement the format specification.

There is a new ——multiple option to the commands, which permits an input file to contain multiple
(contradictory) values for some memory locations. The last value in the file will be used.

A problem has been fixed which stopped SRecord from building under Cygwin.

A bug has been fixed in the C array output. It used to generate invalid output when the input had holes in
the data.

Version 1.6 (2000-Dec-03)

A bug has been fixed in the C array output. (Holes in the input caused an invalid C file to be produced.)

Reference Manual SRecord 13

Read Me(SRecord) Read Me(SRecord)

There is are new CRC input filters, both 16-bit and 32-bit, both big and little endian. See srec_cat(1) for
more information.

There is a new VHDL output format.

There are new checksum filters: in addition to the existing one’s complement (bit not) checksum filter,
there are now negative and positive checksum filters. See srec_cat(1) for more information.

The checksum filters are now able to sum over 16-bit and 32-bit values, in addition to the existing byte
sums.

The srec_cmp program now has a ——verbose option, which gives more information about how the two
inputs differ. See srec_cmp(1) for more information.

Version 1.5 (2000-Mar-06)

There is now a command line option to guess the input file format; all of the tools understand this option.

The “MOS Technologies” file format is now understood for reading and writing. See srec_mos_tech(5)
for more information.

The “Tektronix Extended” file format is now understood for reading and writing. See
srec_tektronix_extended(5) for more information.

The “Texas Instruments Tagged” file format is now understood for reading and writing. (Also known as
the TI-Tagged or SDSMAC format.) See srec_ti_tagged(5) for more information.

The ““ascii-hex” file format is now understood for reading and writing. (Also known as the ascii-space-
hex format.) See srec_ascii_hex(5) for more information.

There is a new byte swap input filter, allowing pairs of odd and even input bytes to be swapped. See
srec_cat(1) for more information.

The “wilson” file format is now understood for reading and writing. This mystery format was added for
a mysterious type of EPROM writer. See srec_wilson(5) for more information.

The srec_cat program now has a —data-only option, which suppresses all output except for the data
records. This helps when talking to brain-dead EPROM programmers which barf at anything but data.
See srec_cat(1) for more information.

There is a new —Line-Length option for the srec_cat program, allowing you to specify the maximum
width of output lines. See srec_cat(1) for more information.

Version 1.4 (2000-Jan-13)

SRecord can now cope with CRLF sequences in Unix files. This was unfortunately common where the
file was generated on a PC, but SRecord was being used on Unix.

Version 1.3 (1999-May-12)

A bug has been fixed which would cause the crop and exclude filters to dump core sometimes.

A bug has been fixed where binary files were handled incorrectly on Windows NT (actually, any system
in which text files aren’t the same as binary files).

There are three new data filters. The ——OR filter, which may be used to bit-wise OR a value to each data
byte; the —AND filter, which may be used to bit-wise AND a value to each data byte; and the
——eXclusive-OR filter, which may be used to bit-wise XOR a value to each data byte. See srec_cat(1)
for more information.

Version 1.2 (1998-Nov-04)

This release includes file format man pages. The web page also includes a PostScript reference manual,
containing all of the man pages.

The Intel hex format now has full 32-bit support. See srec_intel(5) for more information.

The Tektronix hex format is now supported (only the 16-bit version, Extended Tektronix hex is not yet
supported). See srec_tektronix(5) for more information.

Reference Manual SRecord 14

Read Me(SRecord) Read Me(SRecord)

* There is a new split filter, useful for wide data buses and memory striping, and a complementary unsplit
filter to reverse it. See srec_cat(1) for more information.

Version 1.1 (1998-Mar-22)
First public release.

Reference Manual SRecord 15

Build(SRecord) Build(SRecord)

NAME
How to build SRecord

SPACE REQUIREMENTS
You will need about 3MB to unpack and build the SRecord package. Your milage may vary.

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your
installation of SRecord.

Boost Library
You will need the C++ Boost Library. If you are using a package based system, you will need the
libboost-devel package, or one named something very similar.
http://boost.org/

Libgcrypt Library
You will need the GNU Crypt library. If you are using a package based system, you will need the
libgerypt-devel package, or one named something very similar.
http://directory.fsf.org/project/libgcrypt/

GNU Libtool
You will need the GNU Libtool software, used to build shared libraries on a variety of systems.
http://www.gnu.org/software/libtool/

GNU Groff
The documentation for the SRecord package was prepared using the GNU Groff package
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time — if GNU Groff has been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if you have not done
so already. This is not essential. SRecord was developed using the GNU C++ compiler, and the
GNU C++ libraries.

The GNU FTP archives may be found at ftp.gnu.org, and are mirrored around the world.
SITE CONFIGURATION

The SRecord package is configured using the configure program included in this distribution.

The configure shell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates the Makefile and lib/config.h files. It also creates a shell script
config.status that you can run in the future to recreate the current configuration.

Normally, you just cd to the directory containing SRecord’s source code and then type
% ./configure
...lots of output...
%
If you’re using csh on an old version of System V, you might need to type
% sh configure
...lots of output...
%
instead to prevent csh from trying to execute configure itself.

Running configure takes a minute or two. While it is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, run configure using the quiet option; for example,

% ./configure ——quiet

%

To compile the SRecord package in a different directory from the one containing the source code, you must
use a version of make that supports the VPATH variable, such as GNU make. cd to the directory where you
want the object files and executables to go and run the configure script. configure automatically checks for
the source code in the directory that configure is in and in .. (the parent directory). If for some reason
configure is not in the source code directory that you are configuring, then it will report that it can’t find the

Reference Manual SRecord 16

Build(SRecord) Build(SRecord)

source code. In that case, run configure with the option ——srcdir=DIR, where DIR is the directory that
contains the source code.

By default, configure will arrange for the make install command to install the SRecord package’s files in
/usr/local/bin, and /usr/local/man. There are options which allow you to control the placement of these
files.

——prefix=PATH
This specifies the path prefix to be used in the installation. Defaults to /usr/local unless otherwise
specified.

——exec-prefix=PATH
You can specify separate installation prefixes for architecture-specific files files. Defaults to
${prefix} unless otherwise specified.

-—bindir=PATH
This directory contains executable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to ${exec_prefix}/bin unless otherwise specified.

—--mandir=PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to ${prefix}/man unless otherwise
specified.

configure ignores most other arguments that you give it; use the ——help option for a complete list.

On systems that require unusual options for compilation or linking that the SRecord package’s configure
script does not know about, you can give configure initial values for variables by setting them in the
environment. In Bourne-compatible shells, you can do that on the command line like this:

$ CXX='g++ -traditional’ LIBS=-lposix ./configure

...lots of output...

$
Here are the make variables that you might want to override with environment variables when running
configure.

Variable: CXX
C++ compiler program. The default is c++.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults to empty. It is common
to use CPPFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to install files. The default is install if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form —1foo —1bar. The configure script will append to this, rather
than replace it. It is common to use LIBS=-L/usr/local/1lib to access other installed
packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configure could check whether to do them, and mail diffs or instructions to the author so that they can be
included in the next release.

BUILDING SRECORD
All you should need to do is use the
% make
...lots of output...
%
command and wait. When this finishes you should see a directory called bin containing three files:
srec_cat, srec_cmp and srec_info.

Reference Manual SRecord 17

Build(SRecord) Build(SRecord)

srec_cat srec_cat program is used to manipulate and convert EPROM load files. For more information,
see srec_cat(1).

srec_cmp
The srec_cmp program is used to compare EPROM load files. For more information, see
srec_cmp(1).

srec_info
The srec_info program is used to print information about EPROM load files. For more
information, see srec_info(1).

If you have GNU Groff installed, the build will also create a etc/reference.ps file. This contains the
README file, this BUILDING file, and all of the man pages.

You can remove the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%
command. To remove all of the above files, and also remove the Makefile and lib/config.h and config.status
files, use the
% make distclean
...lots of output...
%
command.

The file etc/configure.in is used to create configure by a GNU program called autoconf. You only need to
know this if you want to regenerate configure using a newer version of autoconf .

Windows NT
It is possible to build SRecord on MS Windows platforms, using the Cygwin (see www.cygwin.com) or
DJGPP (see www.delorie.com/djgpp) environments. This provides the “porting layer” necessary to
run Unix programs on Windows. The build process is exactly as described above.

You may need to pass in the include path to the Boost library. This is most simply done as
CC="gcc —-no-cygwin’ \
CXX='g++ -mno-cygwin -I/usr/include/boost-1_33_1" \

DJGPP always produces native binaries, however if you want to make native binaries with Cygwin (i.e.
ones which work outside Cygwin) there is one extra step you need after running . /configure and
before you run make. You need to edit the Makefile file, and add ~-mno—cygwin to the end of the
CXX=g++ line.

Once built (using either tool set) Windows binaries should be testable in the same way as described in the
next section. However, there may be some CRLF issues in the text file comparisons which give false
negatives, depending on the CRLF setting of your Cygwin file system when you unpacked the tarball.

TESTING SRECORD
The SRecord package comes with a test suite. To run this test suite, use the command
% make sure
...lots of output...
Passed All Tests
%

The tests take a few seconds each, with a few very fast, and a couple very slow, but it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

Reference Manual SRecord 18

Build(SRecord) Build(SRecord)

INSTALLING SRECORD
As explained in the SITE CONFIGURATION section, above, the SRecord package is installed under the
/usr/local tree by default. Use the ——prefix=PATH option to configure if you want some other path.
More specific installation locations are assignable, use the ——he1p option to configure for details.

All that is required to install the SRecord package is to use the

% make install

...lots of output...

%
command. Control of the directories used may be found in the first few lines of the Makefile file and the
other files written by the configure script; it is best to reconfigure using the configure script, rather than
attempting to do this by hand.

GETTING HELP
If you need assistance with the SRecord package, please post to the srecord-users mailing list
srecord-users@lists.sourceforge.net
For information obout the srecord-users mailing list. http://srecord.sourceforge.net/mailing-list.html

When reporting problems, please include the version number given by the
% srec_cat -version
srecord version [.64.D001
...warranty disclaimer..
%
command. Please do not send this example; run the program for the exact version number.

COPYRIGHT
srecord version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 SCott Finneran

The SRecord package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

It should be in the LICENSE file included with this distribution.

AUTHOR
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 19

New Format(SRecord) New Format(SRecord)

NAME

How to add a new file format

DESCRIPTION
This section describes how to add a new file format. It’s mostly a set of reminders for the maintainer. If
you want a format added to the distribution, use this method and e-mail the maintainer a patch (generated
with diff -Nur, usually) and it can be added to the sources if appropriate.

New Files
The directory hierarchy is an echo of the class hierarchy, making it easy to guess the filename of a class,
and to work out the appropriate file name of a new class. You get used to it. It is suggested that you simply
work in the root of the source tree (exploiting tab-completion in your shell and your editor) rather than
continually changing directories up and down the source tree. All of the file names below assume this.

The following files need to be creates for a new format.

srecord/output/file/name.cc
This file is how to write the new format. Take a look at the other files in the same directory for
examples. Also check out srecord/output/file.h and srecord/output.h for various helper methods.

srecord/output/file/name.h
This is the class declaration for the above file.

srecord/input/file/name.cc
This file is how to read the new format. Take a look at the other files in the same directory for
examples. Also check out srecord/input/file.h and srecord/input.h for various helper methods.

srecord/input/file/name.h
This is the class declaration for the above file.

man/man5/srec_name.5
This file describes the format. Take a look at the other files in the same directory for examples.

If you need to describe something as “stupid”, as is all too often the case, use thesaurus.com
to find a synonym. Use the following command
find man/. -type £ | xargs grep —i synonym

to make sure it hasn’t been used yet.

test/nn/tnnmma.sh
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the
patch for your new format accepted rapidly if it comes with at least one test for its output class,
and at least one test for its input class.

If your filter has endian-ness, add tests for each endian.

Modified Files
The following files need to be updated to mention the new format.

srecord/srecord.h
Add the new include file to the list. This file controls what files are installed into the
/usr/include directory. Not all of them, just the public interface.

etc/README.man
Mention the new format in the section of this file which describes the supported file formats.

etc/index.html
Mention the new format in the section of this file which describes the supported file formats.

srecord/arglex/tool.h
Add the new format to the command line argument type enum.

If your filter has endian-ness, add one for each endian, using “_be” and “_le” suffixes.

Reference Manual SRecord 20

New Format(SRecord) New Format(SRecord)

srecord/arglex/tool.cc
Add the new format to the array of command line arguments types.

If your filter has endian-ness, add one for each endian, using “_Big_Endian” and
“_Little_Endian” suffixes.

srecord/arglex/tool/input.cc
Add the new format to the code which parses input formats.

srecord/arglex/tool/output.cc
Add the new format to the code which parses output formats.

srecord/input/file/guess.cc
Add the new format to the list of formats which are tested.

man/manl/srec_input.1
Mention the new format in the section of this file which describes the supported input file
formats.

man/manl/srec_cat.1
Mention the new format in the section of this file which describes the supported output file
formats.

Makefile
Actually, the system the maintainer uses automatically generates this file, but if you aren’t using
Aegis you will need to edit this file for your own use.

Tests
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the patch for your
new format accepted rapidly if it comes with at least one test for its output class, and at least one test for its
input class.

If your filter has endian-ness, add tests for each endian.

IMPLEMENTATION ISSUES

In implementing a new file format, there are a couple of philosophical issues which affect technical
decisions:

Be liberal in what you accept
Where ever possible, consume the widest possible interpretation of valid data. This includes
treating mandatory input fields as optional (e.g. file headers and execution start addresses), and
coping with input definitions to their logical extremes (e.g. 255 byte data records in Motorola
format). Checksums should always be checked on input, only ignore them if the —ignore-
checksums command line option has been given. Absurd line lengths must be tolerated.

Be conservative in what you produce
Even when the input is questionable, the output produced by srec_cat must always be strictly
conforming with the format definition (except as mandated by command line options, see below).
Checksums, if the format has them, must always be correct on output. Line lengths should
default to something reasonable (about 80 characters or less).

Eat Your Own Dog Food
You input class must always be able to consume what your output class produces, no matter what
combination of command line options (see below) has been selected.

Round Trip
In general, what went in is what comes out.

* The data may be re-arranged in order, the line lengths may change, but the same data should
go out as came in. (The data should be unchanged even if the format changed, assuming
equally capable formats.) The srec_cmp(1) command may be used to verify this.

e If the input has no header record, the output should not have one either (if at all possible).
This means not automatically inserting a header record if the output file code sees data as the

Reference Manual SRecord 21

New Format(SRecord) New Format(SRecord)

first method call. (The —disable=header option affects this, too.)

» If the input has no execution start address record, the output should not have one either (if at
all possible). This means not automatically inserting an execution start address record if the
output file code does not see one by the time the destructor is called. (The —disable=exec-
start-addr flag affects this, too.)

* Write at least one test that does a “round trip” of data through the new format and back again,
exercising any interesting boundary conditions along the way (e.g. data records spanning
segment boundaries).

Holes Do not to fill in holes in the data. That said, sometimes you have to fill holes in the data. This
happens, for example, when a 16-bit format is faced with an 8-bit byte of data for one or other
half of a 16-bit word. If there is no other way around it, call the fatal_alignment_error method,
which will suggest a suitable input filter.

OPTIONS

There are also some command line arguments you will need to take into account:

—address-length
This options is used to specify the minimum address length, if your new format has a choice
about how many bytes of address it produces.

—data-only
This option implies all of the —disable=header, —disable=data-count —disable=exec-start-addr
and —disable=footer options. Only the essential data records are produced.

—disable=header
If this option is used, no header records are to be produced (or minimal header records). This is
available as the enable_header_flag class variable in the methods of your derived class.

—disable=data-count
If this option is used, no data record count records are to be produced. This is available as the
enable_data_count_flag class variable in the methods of your derived class.

—disable=exec-start-addr
If this option is used, no execution start address records are to be produced. This is available as
the enable_goto_addr_flag class variable in the methods of your derived class.

—disable=footer
If this option is used, no end-of-file records are to be produced. This is available as the
enable_footer_flag class variable in the methods of your derived class.

—enable=optional-address
If this option is used, in combination with a format that does not have an address on every line,
the the first zero address many be omitted. All subsequent addresses are not optional, just the
first zero address. Defaults to disabled.

—ignore-checksums
If this flag is set, your file input methods must parse but not check checksums, if the format has
checksums. You can tell if you need to use checksums by calling the use_checksums ()
method within the implementation of your derived class. This only applies to input; output must
always produce correct checksums.

—line-length
Where your output format is text, and there exists the possibility of putting more or less text on
each line (e.g. the Motorola format allows a variable number of data bytes per record) then this
should be controllable. This manifests in the address_length_set and
preferred_block_size_get methods you must implement in your derived class.

CODING STYLE
Please following the coding style of the existing code. It makes your patches and contributions more likely
to be accepted if they don’t have to be extensively reformatted.

Reference Manual SRecord 22

New Format(SRecord) New Format(SRecord)

Indent increments are four characters. Do not use tab characters at all, nobody can agree how wide they are
supposed to be. Line length is 80 characters or fewer, no exceptions.

Please follow the existing convention of always using Doxygen comments on all your instance variables
and methods, even for private methods. Always document all arguments of all methods, even private
methods, using @param tags; see existing style. Always use whole sentences in your Doxygen
documentation, see existing code for examples.

Do not use upper case letters in file names. Do not use white space or shell special characters in file names.

When sending a patch please use “diff —Nur”, as this will include your new files in the patch, and you will
not need additional attachments in your email. Patches are preferred over tarballs.

Include tests. It makes your patches and contributions more likely to be accepted if the maintainer doesn’t
have to write your tests for you. See sources for examples of existing tests.

CONTRACT RATES
It is possible to have the maintainer write your new file format or new filter for you. However, if you want
it done for nothing, you will be put at the end of a (very) long queue of other gratis open source work the
maintainer has yet to do. You can jump the queue if you want to pay the maintainer to do the work for you.

The maintainer’s rates are AU$100 per hour.

A well document new format typically takes six hours to write and test, this includes both reading and
writing the new format. A well documented new filter typically takes three hours to write and test.

Examples make these tasks easier. Poor documentation makes these tasks take longer. A mystery format
that requires reverse engineering may take much longer; ask again once you have figured it out.

All code written for you will be included in the project source tarball in its next release. All formats and
filters written for you will be copyright Scott Finneran;E-Mail:;scottfinneran @yahoo.com.au, and they will
be GNU GPL licensed. If you need a format or filter written, it has value to you; the issue of freeloaders is
irrelevant.

Conversely, integrating complete open source contributions and patches is done gratis, and usually done as
promptly as time permits.

AUTHOR
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 23

New Filter(SRecord) New Filter(SRecord)

NAME

How to add a new filter

DESCRIPTION
This section describes how to add a new filter. It’s mostly a set of reminders for the maintainer. If you
want a filter added to the distribution, use this method and e-mail the maintainer a patch (generated with
diff -Nur, usually) and it can be added to the sources if appropriate.

New Files
The directory hierarchy is an echo of the class hierarchy, making it easy to guess the filename of a class,
and to work out the appropriate file name of a new class. You get used to it. It is suggested that you simply
work in the root of the source tree (exploiting tab-completion in your shell and your editor) rather than
continually changing directories up and down the source tree. All of the file names below assume this.

The following files need to be created for a new filter.

srecord/input/filter/name.cc
This file is how to process the new filter. Take a look at the other files in the same directory for
examples. Also read srecord/input.h and srecord/input/filter.h for various helper methods.

srecord/input/filter/name.h
This is the class declaration for the above file.

srecord/input/filter/message/name.cc
If your filter needs all of the data to be known before it can proceed, or it needs all of the data to
appear in ascending address order, derive from the srec_input_filter_message class,
instead. This takes care of all data handling, you only have to write the method that computes the
result from the data. Take a look at the other files in the same directory for examples.

srecord/input/filter/message/name.h
This is the class declaration for the above file.

test/nn/tnnmma.sh
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the
patch for your new filter accepted rapidly if it comes with at least one test.

Modified Files
The following files need to be updated to mention the new filter.

srecord/srecord.h
Add the new include file to the list. This file controls what files are installed into the
/usr/include directory. Not all of them, just the public interface.

etc/README.man
Mention the new filter in the section of this file which describes the supported filters.

etc/index.html
Mention the new filter in the section of this file which describes the supported filters.

srecord/arglex/tool.h
Add the new filter to the command line argument type enum.

If your filter has endian-ness, add one for each endian, using “_be” and “_le” suffixes.

srecord/arglex/tool.cc
Add the new filter to the array of command line arguments types.

If your filter has endian-ness, add one for each endian, using “_Big_Endian” and
“_Little_Endian” suffixes.

srecord/arglex/tool/input.cc
Add the new filter to the code which parses input filters.

If your filter has endian-ness, add your command line tokens to the switch in the
srecord::arglex_tool::get_endian_by_token method.

Reference Manual SRecord 24

New Filter(SRecord) New Filter(SRecord)

man/manl/o_input.so
Mention the new filter in the section of this file which describes the supported input filters.

Makefile
Actually, the system the maintainer has Aegis automatically generate this file, but if you aren’t
using Aegis you will need to edit this file for your own use.

Tests
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the patch for your
new filter accepted rapidly if it comes with at least one test.

If your filter has endian-ness, add tests for each endian.

IMPLEMENTATION ISSUES

In implementing a new filter, there are a couple of philosophical issues which affect technical decissions:

* Be liberal in what you accept. Where ever possible, consume the widest possible interpretation of
“valid” data. You especially need to cope with data with holes, and data records out of order, and data
records not nicely aligned.

If your filter has endian-ness, add tests for each endian.

* Be conservative in what you produce. Even when the input is weird, the output produced by the filter
must be conforming. E.g. the byte-swap filter still works when it has only one of the two bytes, and the
other is a hole; it swaps the byte and the hole.

» If the input has no header record, the output should not have one either.
* If the input has no execution start address record, the output should not have one either.

* Do not to fill in holes in the data, unless you are a writing a “fill” filter. See the
srecord/input/filter/message. cc file for an example of issuing a warning in the presence
of holes.

» If the new filter is supposed to be its own inverse (e.g. byte-swap), or a pair of filters are supposed to be
inverses (e.g. split and unsplit) be sure to write a test to confirm this. The tests should exersize all of the
boundary conditions (e.g. around the edges of holes, extremes of data ranges).

CODING STYLE
Please following the coding style of the existing code. It makes your patches and contributions more likely
to be accepted if they don’t have to be extensively reformatted.

Indent increments are four characters. Do not use tab characters at all, nobody can agree how wide they are
supposed to be. Line length is 80 characters or fewer, no exceptions.

Please follow the existing convention of always using Doxygen comments on all your instance variables
and methods, even for private methods. Always document all arguments of all methods, even private
methods, using @param tags; see existing style. Always use whole sentences in your Doxygen
documentation, see existing code for examples.

Do not use upper case letters in file names. Do not use white space or shell special characters in file names.

When sending a patch please use “diff —Nur”, as this will include your new files in the patch, and you will
not need additional attachments in your email. Patches are preferred over tarballs.

Include tests. It makes your patches and contributions more likely to be accepted if the maintainer doesn’t
have to write your tests for you. See sources for examples of existing tests.

CONTRACT RATES
It is possible to have the maintainer write your new file format or new filter for you. However, if you want
it done for nothing, you will be put at the end of a (very) long queue of other gratis open source work the
maintainer has yet to do. You can jump the queue if you want to pay the maintainer to do the work for you.

The maintainer’s rates are AU$100 per hour.

A well document new format typically takes six hours to write and test, this includes both reading and

Reference Manual SRecord 25

New Filter(SRecord) New Filter(SRecord)

writing the new format. A well documented new filter typically takes three hours to write and test.

Examples make these tasks easier. Poor documentation makes these tasks take longer. A mystery format
that requires reverse engineering may take much longer; ask again once you have figured it out.

All code written for you will be included in the project source tarball in its next release. All formats and
filters written for you will be copyright Scott Finneran;E-Mail:;scottfinneran @yahoo.com.au, and they will
be GNU GPL licensed. If you need a format or filter written, it has value to you; the issue of freeloaders is
irrelevant.

Conversely, integrating complete open source contributions and patches is done gratis, and usually done as
promptly as time permits.

AUTHOR
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 26

srec_cat(1) General Commands Manual srec_cat(1)

NAME
srec_cat — manipulate EPROM load files

SYNOPSIS
srec_cat [option...] filename...
srec_cat —Help
srec_cat —VERSion

DESCRIPTION
The srec_cat program is used to assemble the given input files into a single output file. The use of filters
(see below) allows significant manipulations to be performed by this command.

Data Order
The data from the input files is not immediately written to the output, but is stored in memory until the
complete EPROM image has been assembled. Data is then written to the output file in ascending address
order. The original ordering of the data (in those formats capable of random record ordering) is not
preserved.

Data Comparison
Because input record order is not preserved, textual comparison of input and output (such as the diff(1) or
tkdiff(1) commands) can be misleading. Not only can lines appear in different address orders, but line
lengths and line termination can differ as well. Use the srec_cmp(1) program to compare two EPROM load
files. If a text comparison is essential, run both files through the srec_cat(1) program to ensure both files to
be compared have identical record ordering and line lengths.

Data Conflicts
The storing of data in memory enables the detection of data conflicts, typically caused by linker sections
unintentionally overlapping.

* A warning will be issued for each address which is redundantly set to the same value.

* A fatal error will be issued if any address is set with contradictory values. To avoid this error use an
—exclude —within filter (see srec_input(1)) or, to make it a warning, use the —contradictory-bytes
option (see below).

* A warning will be issued for input files where the data records are not in strictly ascending address order.
To suppress this warning, use the —disable-sequence-warning option (see below).

These features are designed to detect problems which are difficult to debug, and detects them before the
data is written to an EPROM and run in your embedded system.

INPUT FILE SPECIFICATIONS
Input may be qualified in two ways: you may specify a data file or a data generator. format and you may
specify filters to apply to them. An input file specification looks like this:
data-file [filter ...]
data-generator [filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looks like this:
filename [format][—ignore-checksums]
The default format is Motorola S-Record format, but many others are also understood.

Data Generators
It is also possible to generate data, rather than read it from a file. You may use a generator anywhere you
could use a file. An input generator specification looks like this:
—GENerate address-range —data-source
Generators include random data and various forms of constant data.

Common Manual Page
See srec_input(1) for complete details of input specifiers. This description is in a separate manual page
because it is common to more than one SRecord command.

Reference Manual SRecord 27

srec_cat(1)

OPTIONS

General Commands Manual srec_cat(1)

The following options are understood:

@filename

The named text file is read for additional command line arguments. Arguments are separated by
white space (space, tab, newline, efc). There is no wildcard mechanism. There is no quoting
mechanism. Comments, which start with *# and extend to the end of the line, are ignored.
Blank lines are ignored.

—QOutput filename [format |

Reference Manual

This option may be used to specify the output file to be used. The special file name “—[rq] is
understood to mean the standard output. Output defaults to the standard output if this option is
not used.

The format may be specified as:

—Absolute_Object_Module_Format
An Intel Absolute Object Module Format file will be written. (See srec_aomf (5) for a
description of this file format.)

—Ascii_Hex
An Ascii-Hex file will be written. (See srec_ascii_hex(5) for a description of this file
format.)

—ASM [prefix][—option...]
A series of assembler DB statements will be written.

The optional prefix may be specified to change the names of the symbols generated.
The defaults to "eprom" if not set.

Several options are available to modify the style of output:

—Dot_STyle
Use "dot" style pseudo-ops instead of words. For example .byte instead of
the DB default.

—HEXadecimal_STyle
Use hexadecimal numbers in the output, rather than the default decimal
numbers.

—Section_STyle
By default the generated assemble of placed at the correct address using ORG
pseudo-ops. Section style output emits tables of section addresses and
lengths, so the data may be related at runtime.

—A430 Generate output which is compliant to the a430 . exe compiler as it is used,
e.g. in AR Embedded Workbench. This is short-hand for —section-style
—hex-style

—CL430 Generate output which is Code Composer Essentials compliant, i.e. the
compiler of it. This is short-hand for —section-style —hex-style —dot-style

—Output_Word

Generate output which is in two-byte words rather than bytes. This assumes
little-endian words; you will need to use the —Byte-Swap filter if your target
is big-endian. No attempt is made to align the words onto even address
boundaries; use and input filter such as

input-file —fill OXFF —within input-file

—range-pad 2
to pad the data to whole words first.

SRecord 28

srec_cat(1)

Reference Manual

General Commands Manual srec_cat(1)

—Atmel_Generic
An Atmel Generic file will be written. (See srec_atmel_generic(5) for a description of
this file format.)

—-BASic A series of BASIC DATA statements will be written.

-B-Record
A Freescale MC68EZ328 Dragonball bootstrap b-record format file will be written.
(See srec_brecord(5) for a description of this file format.)

—Binary
A raw binary file will be written. If you get unexpected results please see the
srec_binary(5) manual for more information.

—C-Array [identifier][—option... |
A C array defintion will be written.

The optional identifier is the name of the variable to be defined, or bugus if not
specified.

—INClude
This option asks for an include file to be generated as well.

—No-CONST
This options asks for the variables to not use the const keyword (they are
declared constant be default, so that they are placed into the read-only
segment in embedded systems).

—C_COMpressed
These options ask for an compressed c-array whose memory gaps will not be
filled.

—Output_Word
This option asks for an output which is in words not in bytes. This is little
endian, so you may need to

—PREfix string
This option allows a string to be prepended to the array definition. This is
commonly used for non-standard options common to cross compilers.

-POSTfix string
This option allows a string to be appended to the array definition. This is
commonly used for non-standard options common to cross compilers.

—COE This option says to use the Xilinx Coefficient File Format (.coe) for output. (See
srec_coe(S) for a description of this file format.)

—COsmac
An RCA Cosmac Elf format file will be written. (See srec_cosmac(5) for a description
of this file format.)

—Dec_Binary
A DEC Binary (XXDP) format file will be written. (See srec_dec_binary(5) for a
description of this file format.)

—Elektor_Monitor52
This option says to use the EMONS52 format file when writing the file. (See
srec_emon52(5) for a description of this file format.)

—FAlIrchild
This option says to use the Fairchild Fairbug format file when writing the file. (See
srec_fairchild(5) for a description of this file format.)

SRecord 29

srec_cat(1)

Reference Manual

General Commands Manual srec_cat(1)

—Fast_Load
This option says to use the LSI Logic Fast Load format file when writing the file. (See
srec_fastload(5) for a description of this file format.)

—Formatted_Binary
A Formatted Binary format file will be written. (See srec_formatted_binary(5) for a
description of this file format.)

—FORTH [-option]
A FORTH input file will be written. Each line of output includes a byte value, an
address, and a command.

—RAM The store command is C! This is the default.

-EEPROM
The store command is EEC!

—Four_Packed_Code
This option says to use the PFC format file when writing the file. (See srec_fpd(5) for
a description of this file format.)

—-HEX_Dump
A human readable hexadecimal dump (including ASCII) will be printed.

-IDT AnIDT System Integration Manager (IDT/sim) binary file will be written. (See
srec_idt(5) for a description of this file format.)

—Intel An Intel hex format file will be written. (See srec_intel(5) for a description of this file
format.) The default is to emit “i32hex” 32-bit linear addressing; if you want “il16hex”
20-bit extended segment addressing use the —address-length=3 option, if you want
“i8hex” 16-bit addressing use the —address-length=2 option.

—Intel_HeX_16
An Intel-16 hex format (INHX16) file will be written. (See srec_intell6(5) for a
description of this file format.)

—Lattice_Memory_Initialization_Format [width]
The Memory Initialization Format (.mem) by Lattice Semiconductor is understood for
writing only. (A.k.a. -MEM) (See srec_mem(5) for a description of this file format.)
-LOGisim
LOginsim logic simuator uses the format See —srec_logisim(5) form more information.
—Memory_Initialization_File [width |
Memory Initialization File (MIF) by Altera format will be written. The width defaults
to 8 bits. (See srec_mif(5) for a description of this file format.)

—Mips_Flash_Big_Endian

—Mips_Flash_Little_Endian
MIPS Flash file format will be written. (See srec_mips_flash(5) for a description of
this file format.)

—MOS_Technologies
An Mos Technologies format file will be written. (See srec_mos_tech(5) for a
description of this file format.)

—Motorola [width |
A Motorola S-Record file will be written. (See srec_motorola(5) for a description of
this file format.) This is the default output format. By default, the smallest possible
address length is emitted, this will be S19 for data in the first 64KB; if you wish to
force S28 use the —address-length=3 option; if you wish to force S37 use the
—address-length=4 option

The optional width argument describes the number of bytes which form each address

SRecord 30

srec_cat(1) General Commands Manual srec_cat(1)

multiple. For normal uses the default of one (1) byte is appropriate. Some systems
with 16-bit or 32-bit targets mutilate the addresses in the file; this option will imitate
that behavior. Unlike most other parameters, this one cannot be guessed.

—MsBin This option says to use the Windows CE Binary Image Data Format to write the file.
See srec_msbin(5) for a description of this file format.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to write the file.
See srec_needham(5) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific hexadecimal format. See srec_os65v(5) for
a description of this format.

—PPB This option says to use the Stag Prom Programmer binary format. See srec_ppb(5) for
a description of this format.

—PPX This option says to use the Stag Prom Programmer hexadecimal format. See
srec_ppx(5) for a description of this format.

—SIGnetics
This option says to use the Signetics hex format. See srec_signetics(5) for a description
of this format.

—SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). See srec_spasm(S) for a description of this format.

—SPAsm_Little_Endian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). But with the data the other way around.

—STewie
A Stewie binary format file will be written. (See srec_stewie(5) for a description of
this file format.)

—Tektronix
A Tektronix hex format file will be written. (See srec_tektronix(5) for a description of
this file format.)

—Tektronix_Extended
A Tektronix extended hex format file will be written. (See srec_tektronix_extended(5)
for a description of this file format.)

—Texas_Instruments_Tagged
A TI-Tagged format file will be written. (See srec_ti_tagged(S) for a description of
this file format.)

—Texas_Instruments_Tagged_16
A Texas Instruments SDSMAC 320 format file will be written. (See
srec_ti_tagged_16(5) for a description of this file format.)

—Texas_Instruments_TeXT
This option says to use the Texas Instruments TXT (MSP430) format to write the file.
See srec_ti_txt(5) for a description of this file format.

—-TRS80
This option says to use the Radio Shack TRS-80 object file format to write the file. See
srec_trs80(5) for a description of this file format.

-VHdI [bytes-per-word [name 1]
A VHDL format file will be written. The bytes-per-word defaults to one, the name
defaults to eprom. The etc/x_defs_pack.vhd file in the source distribution contains an

Reference Manual SRecord 31

srec_cat(1) General Commands Manual srec_cat(1)

example ROM definitions pack for the type-independent output. You may need to use
the —byte-swap filter to get the byte order you want.

—VMem [memory-width |
A Verilog VMEM format file will be written. The memory-width may be 8, 16, 32, 64
or 128 bits; defaults to 32 if unspecified. (See srec_vmem(5) for a description of this
file format.) You may need to use the —byte-swap filter to get the byte order you want.

-WILson
A wilson format file will be written. (See srec_wilson(S) for a description of this file
format.)

—Address_Length number
This option many be used to specify the minimum number of bytes to be used in the output to
represent an address (padding with leading zeros if necessary). This helps when talking to
imbecilic EPROM programmer devices which do not fully implement the format specification.

—CRLF This option is short-hand for the —line-termination=crlf option. For use with hare-brained
EPROM programmer devices which assume all the world uses Evil Bill’s operating system’s line
termination.

—Data_Only
This option implies the —disable=header, —disable=data-count, —disable=exec-start-address
and —disable=footer options.

—DISable feature-name
This option is used to disable the output of a named feature. See the —enable option for a
description of the available features.

—ENable feature-name
This option is used to enable the output of a named feature.

Header This feature controls the presence of header records, records which appear before the
data itself. Headers often, but not always, include descriptive text.

Execution_Start_Address
This feature controls the presence of execution start address records, which is where the
monitor will jump to and start executing code once the hex file has finished loading.

Data_Count
This feature controls the presence of data record count records, which appear aftre the
data, and state how many data records preceeded them. Usually a data integrity
mechanism.

Footer This feature controls the presence of a file termination record, one that does not double
as an execution start address record.

Optional_Address
In formats that have the address and the data separated or partially separated (as
opposed to having a complete address in every record) it is possible to disable emitting
the first address where that address would be zero, as these format often default the
address to zero if no address is seen beofre the first data record. This is disabled by
default, the zero address is always emitted.

Not all formats have all of the above features. Not all formats are able to optionally omit any or
all the above features. Feature names may be abbreviated like command line option names.

—Execution_Start_Address number
This option may be used to set the execution start address, in those formats which support it. The
execution start address is where the monitor will jump to and start executing code once the hex
file has finished loading, think of it as a “goto” address. Usually ignored by EPROM
programmer devices. This option implies the —enable=exec-start-addr option.

Reference Manual SRecord 32

srec_cat(1) General Commands Manual srec_cat(1)

Please note: the execution start address is a different concept than the first address in memory of
your data. If you want to change where your data starts in memory, use the —offset filter.

—-HEAder string
This option may be used to set the header comment, in those formats which support it. This
option implies the —enable=header option.

If you need to inject binary data into the header, use the URL encoding that uses % followed by
two hexadeimal characters. For example a backspace would be encoded as “%08”.

—IGnore_Checksums
The —IGnore-Checksums option may be used to disable checksum validation of input files, for
those formats which have checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if they are missing) but their values are not checked. Used after an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all f